推荐新闻

上海成果发表指导数据科学共同合作

来源: 发布时间:2021-06-21

    术语解读:PPI:蛋白质-蛋白质相互作用(protein-proteininteraction)PPImoduleI:指蛋白质相互作用模块,一个模块指向一个功能数据要求:基因列表应用示例1:(于2018年3月发表在Immunity.,影响因子)T细胞活化过程中产生蛋白质组进行多重定量分析,然后对差异表达蛋白权重聚类,并将聚类蛋白叠加到PPI网络上以识别功能模块。D.模块大小的分布,通过将每个WPC(权重聚类结果)中的蛋白叠加到蛋白-蛋白相互作用(PPI)网络上识别模块。每个模块的蛋白质数量显示出来。E.各个模块及其交互的关系图。圆圈(节点)表示90个模块,圆圈大小与模块大小成比例。边连接共享PPIs的模块。在(F)和(G)中进一步扩展了装箱模块。F.来自WPC3的细胞质和线粒体核糖体的四个互连模块。显示了蛋白质的名称和每个模块的代表性功能术语。G.来自WPC3的蛋白酶体,OXPHOS和线粒体复合物IV途径的模块。 做数据分析就找云生物。上海成果发表指导数据科学共同合作

    GSVA(基因集变异分析,反映了样本和感兴趣的通路之间的联系):GSVA全名Genesetvariationanalysis(基因集变异分析),是一种非参数,无监督的算法。与GSEA不同,GSVA不需要预先对样本进行分组,可以计算每个样本中特定基因集的富集分数。换而言之,GSVA转化了基因表达数据,从单个基因作为特征的表达矩阵,转化为特定基因集作为特征的表达矩阵。GSVA对基因富集结果进行了量化,可以更方便地进行后续统计分析。如果用limma包做差异表达分析可以寻找样本间差异表达的基因,同样地,使用limma包对GSVA的结果(依然是一个矩阵)做同样的分析,则可以寻找样本间有***差异的基因集。这些“差异表达”的基因集,相对于基因而言,更加具有生物学意义,更具有可解释性,可以进一步用于**subtype的分型等等与生物学意义结合密切的探究。 上海成果发表指导数据科学共同合作生存曲线分隔,在展示基因表达水平对生存期的影响时找到分组。

    CNV(拷贝数变异分析):CNV(copy-numbervariant)是指拷贝数目变异,也称拷贝数目多态性(copy-numberpolymorphism,CNP),是一个大小介于1kb至3MB的DN**段的变异,在人类及动植物基因组中***分布,主要表现为亚显微水平的缺失或重复。CNV是近年来基因组学的研究热点,是许多人类疾病(如**、遗传性疾病、心血管疾病等)发***展的重要分子机制之一。CNV的分析多见于易于发生染色体结构变异的**研究中,也可用于复杂的神经精神疾病的病因学研究,如智力障碍、帕金森病和孤独症等,也可用于其他疾病的易感性分析,如银屑病、克罗恩病和一些自身免疫系统疾病。CNV研究既可用于单个的病例分析,找到遗传高度异质性的个体致病的遗传学基础,如智力低下的病因诊断;也可用于大量的病例一对照分析,患病群体的常见CNV变异研究,还可用于**家系的研究,如疾病相关新发CNV的研究。基本原理目前主流的CNV检验方法有RNA-seq和SNPArray,已有研究表明使用转录组数据分析到的CNV情况和。CNV分析的**步为筛选somaticCNVs。对正常人来说,基因组应该是二倍体的,所以凡是测到非2倍体的地方都是CNV。但是CNV本身就是人群遗传物质多样性的体现,所以对**样本来说。

    immune-network免疫网络**微环境(TME)是**周围的环境,包括周围血管,免疫细胞,成纤维细胞,信号分子和细胞外基质(ECM)。**与周围微环境密切相关,不断相互作用。**可以通过释放细胞外信号,促进**血管生成和诱导外周免疫耐受来影响微环境,而微环境中的免疫细胞可以影响*细胞的生长和进化。免疫细胞泛指所有参与免疫反应的细胞,也特指能识别抗原,产生特异性免疫应答的淋巴细胞等。主要包括T淋巴细胞、B淋巴细胞、单核细胞、巨噬细胞、粒细胞、肥大细胞、辅佐细胞,以及它们的前体细胞等,是免疫系统的功能单元。**微环境中免疫细胞之间相互作用形成免疫网络,网络设立可以清晰了解**微环境中免疫细胞之间的影响机制。应用场景用网络图同时展示相关关系、pvalue、聚类/分类结果、跟预后的关系。-例如例文中各细胞之间的相关关系、跟预后的关系。基本原理:免疫系统遍布全身,涉及多种细胞、***、蛋白质和组织。它可以区分我们的组织和外来组织自我和非自我。死亡和有缺陷的细胞也会被免疫系统识别和***。如果免疫系统遇到病原体就会产生免疫反应。免疫细胞泛指所有参与免疫反应的细胞,也特指能识别抗原,产生特异性免疫应答的淋巴细胞等。 参考国内外数据资源,根据需求制定构建方案。

棒棒糖图是直观显示蛋白质结构上的突变点**简单且有效的方式。许多致*基因具有比任何其他基因座更频繁突变的优先位点。这些位点被认为是突变热点,棒棒糖图可以用于显示突变热点以及其他突变位点。并可以对比不同**/亚型的突变位点。

基本原理

将蛋白质结构根据氨基酸顺序绘制为长条形,以不同色块标注不同结构域,在基因突变导致氨基酸改变的位置标注棒棒糖,并在棒棒糖圆球标注位点的突变频数以及突变位点。

数据要求

基因突变或者蛋白质突变数据


下游分析

1、突变位点靶向药物分析

2、驱动基因突变分析 在分子生物、细胞生物、实验动物、病理、临床样本方面已与长三角100余家企业形成良好合作关系。上海成果发表指导数据科学共同合作

胰腺疾病预后相关长链非编码RNA。上海成果发表指导数据科学共同合作

    蛋白质主要由碳、氢、氧、氮等化学元素组成,是一类重要的生物大分子。蛋白质的功能由蛋白质的三维结构决定。蛋白质三维结构绘图,可以直观地展示蛋白质三维功能结构,广泛应用于单核苷酸突变功能分析、药物蛋白分子相互作用分析等研究领域。基本原理蛋白质三维结构绘图主要分为蛋白质三维结构预测以及对结构进行可视化两步。蛋白质三维结构预测是基于蛋白质中氨基酸序列预测蛋白质折叠结构的步骤,**常用的预测方法为同源建模,同源建模的原理是序列相似的蛋白质具有相似的蛋白质结构,要推测一个未知结构蛋白的三维结构,只需要找到与之序列高度相似的已知结构模板。在无法进行同源建模(找不到模型)的情况下,还有折叠识别及从头建模法,但是计算量大运行缓慢且建模准确度不如同源建模。获得蛋白质三维结构预测的pbd文件后还需要通过分子三维结构软件绘制可视化的三维图,并分析特殊位点(分子对接或突变位点分析),常用的有pymol和DeepView等。数据要求目标蛋白的氨基酸序列或者编码蛋白的基因序列,突变数据等。下游分析突变位点靶向药物分析等。 上海成果发表指导数据科学共同合作