膜片钳放大器是整个实验系统中的主要,它可用来作单通道或全细胞记录,其工作模式可以是电压钳,也可以是电流钳。从原理来说,膜片钳放大器的探头电路即I-V变换器有两种基本结构形式,即电阻反馈式和电容反馈式,前者是一种典型的结构,后者因用反馈电容取代了反馈电阻,降低了噪声,所以特别适合较低噪声的单通道记录。由于供膜片钳实验的专门的计算机硬件及相应的软件程序的相继出现,使得膜片钳实验操作简便、效率提高。如与EPC-9型膜片钳放大器(内含ITC-16数据采集/接口卡)配套使用的软件PULSE/PULSEFIT,它既可产生刺激波形,控制数据采集,又可分析数据,同时具有用于膜电容监测的锁相放大器,多种软件功能集成于一体。离子通道的近代观念源于Hodgkin、Huxley、Katz等人在20世纪30—50年代的开创性研究。德国高通量全自动膜片钳实验操作
光遗传学调控技术是近几年正在迅速发展的一项整合了光学、基因操作技术、电生理等多学科交叉的生物技术。Nature Methods杂志将此技术评为"Method of the year 2010"[19];美国麻省理工学院科技评述(MIT Technology Review,2010)在其总结性文章"The year in biomedicine"中指出:光遗传学调控技术现已经迅速成为生命科学,特别是神经和心脏研究领域中热门的研究方向之一。目前这一技术正在被全球几百家从事心脏学、神经科学和神经工程研究的实验室使用,帮助科学家们深入理解大脑的功能,进而为深刻认识神经、精神疾病、心血管疾病的发病机理并研发针对疾病干预和的新技术。德国高通量全自动膜片钳实验操作而由通道蛋白介导的膜电导构成了膜反应的主动成分,它的电流电压关系是非线性的。
对电极持续施加一个1mV、10~50 ms的阶跃脉冲刺激,电极入水后电阻约4~6MΩ,此时在计算机屏幕显示框中可看到测试脉冲产生的电流波形。开始时增益不宜设得太高,一般可在1~5mV/pA,以免放大器饱和。由于细胞外液与电极内液之间离子成分的差异造成了液结电位,故一般电极刚入水时测试波形基线并不在零线上,须首先将保持电压设置为0mV,并调节“电极失调控制“使电极直流电流接近于零。用微操纵器使电极靠近细胞,当电极前列与细胞膜接触时封接电阻指示Rm会有所上升,将电极稍向下压,Rm指示会进一步上升。通过细塑料管向电极内稍加负压,细胞膜特性良好时,Rm一般会在1min内快速上升,直至形成GΩ级的高阻抗封接。一般当Rm达到100MΩ左右时,电极前列施加轻微负电压(-30~-10mV)有助于GΩ封接的形成。此时的现象是电流波形再次变得平坦,使电极超极化由-40到-90mV,有助于加速形成封接。为证实GΩ封接的形成,可以增加放大器的增益,从而可以观察到除脉冲电压的首尾两端出现电容性脉冲前列电流之外,电流波形仍呈平坦状。
资料分析:一般电学性质∶ 通过I/V关系计算得到单通道电导,观察通道有无整流。通过离子选择性、翻转电位或其它通道的条件初步确定通道类型。通道动力学分析∶开放时间、开放概率、关闭时间、通道的时间依赖性失活、开放与关闭类型(簇状猝发,Burst)样开放与闪动样短暂关闭(flickering),化学门控性通道的开、关速率常数等数据。药理学研究∶研究的药物,阻断剂、激动剂或其它调制因素对通道活动的影响情况。综合分析得出结沦。一些学者建立了组织切 片膜片钳技术(Slice patch),就能在哺乳动物脑片制备上做全细胞记录。
膜片钳的基本原理则是利用负反馈电子线路,将微电极前列所吸附的一个至几个平方微米的细胞膜的电位固定在一定水平上,对通过通道的微小离子电流作动态或静态观察,从而研究其功能。膜片钳技术实现膜电流固定的关键步骤是在玻璃微电极前列边缘与细胞膜之间形成高阻密封,其阻抗数值可达10~100 GΩ(此密封电阻是指微电极内与细胞外液之间的电阻)。由于此阻值如此之高,故基本上可看成绝缘,其上之电流可看成零,形成高阻密封的力主要有氢健、范德华力、盐键等。此密封不仅电学上近乎绝缘,在机械上也是较牢固的。又由于玻璃微电极前列管径很小,其下膜面积只约1 μm2,在这么小的面积上离子通道数量很少,一般只有一个或几个通道,经这一个或几个通道流出的离子数量相对于整个细胞来讲很少,可以忽略,也就是说电极下的离子电流对整个细胞的静息电位的影响可以忽略,那么,只要保持电极内电位不变,则电极下的一小片细胞膜两侧的电位差就不变,从而实现电位固定。膜片钳技术原理膜片钳技术是用玻璃微电极接触细胞,形成吉欧姆(GΩ)阻抗。德国高通量全自动膜片钳实验操作
细胞是动物和人体的基本组成单元,细胞与细胞内的通信,是依靠其膜上的离子通道进行的。德国高通量全自动膜片钳实验操作
膜片钳技术与其它技术相结合Neher等**将膜片钳技术与Fura2荧光测钙技术结合,同时进行如细胞内荧光强度、细胞膜离子通道电流及细胞膜电容等多指标变化的快速交替测定,这样便可得出同一事件过程中,多种因素各自的变化情况,进而可分析这些变化间的相互关系。Neher将可光解出钙离子的钙螯合物引入膜片钳技术,进而可以定量研究钙离子浓度与分泌率的关系及比较大分泌率等指标。他又创膜片钳的膜电容检测与碳纤电极电化学检测联合运用的技术。之后又将光电联合检测技术与碳纤电极电化学检测技术首先结合起来。这种结合既能研究分泌机制,又能鉴别分泌物质,还能互相弥补各单种方法的不足。Eberwine等于1991年首先将膜片钳技术与RT-PCR技术结合起来运用,可对形态相似而电活动不同的结果作出分子水平的解释,从此开始了膜片钳与分子生物学技术相结合的时代∶基因重组技术,膜通道蛋白重建技术。德国高通量全自动膜片钳实验操作
因斯蔻浦(上海)生物科技有限公司致力于仪器仪表,是一家服务型的公司。公司业务涵盖nVista,nVoke,3D bioplotte,invivo等,价格合理,品质有保证。公司将不断增强企业重点竞争力,努力学习行业知识,遵守行业规范,植根于仪器仪表行业的发展。在社会各界的鼎力支持下,持续创新,不断铸造***服务体验,为客户成功提供坚实有力的支持。